摘要

Bayesian and maximum-likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well-supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.

  • 出版日期2010-12