摘要

The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from the null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.

  • 出版日期2014-4