摘要

Improved understanding of how nutrient levels affect the distribution of plants can provide important insights into the potential impacts of increasing global nitrogen (N) deposition. We used point pattern analyses to examine the impact of nutrient addition on heterogeneity in the spatial distribution of the three main plant species of the meadow steppe community of Hulunbeier, Inner Mongolia: Leymus chinensis (Inn.) Tzvel (aka Aneurotepidimu chinense), a rhizamotous grass; Stipa baicalensis Rasher, a bunch grass; and Artemisia tanacetifolia Linn, a rhizamotous forb. The six treatments tested added nitrogen N in three different concentrations, N with phosphorus (P), P alone and a Control. Although the three plant species were randomly distributed at the start of the experiment in 2011, the spatial distribution of some species in some treatments had changed at the end of 3 years of nutrient addition. There was a significant increase in aggregation of L. chinensis at fine scales of analysis from application of N and P in tandem. However, S. baicalensis and A. tanacetifolia distributions remained random under all treatments. Positive associations of L. chinensis with S. baicalensis and with A. tanacetifolia were apparent at the lowest concentration of added N, 2.5 g Nm(-2) ycar(-1), which represented an approximate doubling of global N deposition. These associations, which represent clustering among individuals of these species were also apparent where only P was applied. Negative associations, representing dispersion, were prevalent with higher N concentrations. The results indicate that increases in global N deposition up to about double current levels may have a positive influence on meadow steppe communities by increasing the niche overlap of different species. However, increases beyond that level may trigger substantial ecological change through increased competition for other, more limited, environmental resources, and disassociation between plants of the different dominant species. Our findings suggest that studies of the spatial patterning of plant communities can contribute to understanding the potential impacts of climate change.