摘要

Two metal organic frameworks (MOFs), namely, [Ni(DTP)-(H2O)](n) (I) and [Cd-2(DTP)(2)(bibp)(1.5)](n) (II) (H2DPT = 4'-(4-(3,5dicarboxylphenoxy) phenyl)-4,2':6',4"-terpyridine; bibp = 1,3-di(1H-imidazol-1-yl)propane), that present structural diversity were solvothermally prepared. Single-crystal X-ray diffraction analysis indicates that they consist of {NiN2O4} building units (for I) and {CdO4N2} and {CdO3N3} building units (for II), which are further linked by multicarboxylate H2DPT to construct microporous three-dimensional frameworks. The remarkable character of these frameworks is that coordination polymer II demonstrates highly selective and sensitive bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion. The fluorescence quenching mechanism of II caused by nitrobenzene is ascribed to electron transfer from electron-rich (II) to electron-deficient nitrobenzene. The result was also evidenced by the density functional theory. Furthermore, anti-ferromagnetic as well as electrochemical characters of Ni-MOF (I) were also investigated in this paper.