摘要

Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina is complex and depends on the ethylene, jasmonic acid and salicylic acid signaling pathways. A quantitative trait loci (QTL) analysis of resistance to this fungus was performed using two populations of recombinant inbred lines. Three loci ORP1-QRP3 (for Quantitative Resistance to Plectosphaerella) were identified and mapped on chromosome 2 (QRP1 and QRP2) and 5 (ORP3). QRP1, the locus showing the strongest effect, was found to correspond to the ERECTA (ER) gene that encodes a receptor-like-kinase (RLK), which has been previously implicated in plant development, and resistance to the bacterium Ralstonia, solanacearum. The leucine-rich repeat and the kinase domains of ERECTA were specifically required for resistance to A cucumerina, as er mutant alleles impaired in any of these domains showed enhanced susceptibility to this fungus, but not to other virulent pathogens. The involvement of the ER-signaling pathway in resistance to P. cucumerina was supported by the fact that three mutants defective in this pathway, elk2, elk5 and elk4 (agb 1-1), which encodes the P-subunit of Arabidopsis heterotrimeric G protein, were also impaired in their resistance to this fungus. The putative function of the Arabidopsis heterotrimeric G protein in resistance to P. cucumerina suggested by the enhanced susceptibility of agb1-1 was corroborated by the demonstration that a null allele (gpa1-4) of the G protein alpha-subunit showed enhanced resistance to this pathogen. Deposition of beta-1,3-glucan callose at infection sites was specifically impaired in er-1 and agb1-1 mutants upon P. cucumerina inoculation. Taken together, these data suggest a putative function of ERECTA and heterotrimeric G protein in P. cucumerina perception.

  • 出版日期2005-7