摘要

Three-dimensional biomedical polycaprolactone scaffolds consisting of microsized spiral-like struts were fabricated using an additive manufacturing process. In this study, various processing parameters such as applied pressure, polymer viscosity, printing nozzle-to-stage distance, and nozzle moving speed were optimized to achieve a unique scaffold consisting of spiral-like struts. Various physical and biological analyses, including the. morphological structure of spirals, mechanical properties, cell proliferation, and osteogenic activities, were performed to evaluate the effect of the spirals of the scaffold. Osteoblast-like cells (MG63) were used to identify the various in vitro cellular responses on the scaffolds. The spiral-like struts, having unique spiral angles, had a. more significant effect on cell attachment, proliferation, and differentiation compared to normal struts. The results suggest that the scaffold consisting of spiral struts can be a potential biomedical device for various applications in tissue engineering.

  • 出版日期2017-3