摘要

Mesenchymal stem cells (MSCs) have the capacity to generate multiple tissues of mesodermal origin, and also have the potential to trans-differentiate into neurons. We isolated MSCs from the Wharton's jelly of the human umbilical cord (WJ-MSCs), and efficiently induced WJ-MSCs into neuron-like cells using a modified method. After neuronal induction for 12 days, most of WJ-MSCs expressed mature neuronal marker MAP2 (83 +/- 7%), and meanwhile some adopted neuronal morphology. WJ-MSCs also expressed Nestin (34 +/- 6%), NSE (30 +/- 5%), and GFAP (12 +/- 3%). Moreover, we used miRNA microarray to analyze the differentially expressed miRNAs in neuronal differentiation of WJ-MSCs. Microarray analysis revealed discrepant miRNA profiles in the uninduced WJ-MSCs and WJ-MSCs derived neurons. Six miRNAs were chosen for further qRT-PCR validation. Among these 6 miRNAs, four miRNAs (miR-1290, miR-26b, miR-194, and miR-124a) were up-regulated and 2 miRNAs (miR-4521 and miR-543) were down-regulated in the WJ-MSCs derived neurons. In conclusion, WJ-MSCs could be efficiently induced into neuron-like cells. More importantly, our findings suggested that miRNAs might play important roles in the neuronal differentiation of WJ-MSCs.