Down-regulation of IRES containing 5 ' UTR of HCV genotype 3a using siRNAs

作者:Khaliq Saba*; Jahan Shah; Pervaiz Asim; Ashfaq Usman Ali; Hassan Sajida
来源:Virology Journal, 2011, 8(1): 221.
DOI:10.1186/1743-422X-8-221

摘要

Background: Hepatitis C virus (HCV) is a major causative agent of liver associated diseases leading to the development of hepatocellular carcinoma (HCC) all over the world and genotype-3a responsible for most of the cases in Pakistan. Due to the limited efficiency of current chemotherapy of interferon-alpha (IFN-alpha) and ribavirin against HCV infection alternative options are desperately needed out of which the recently discovered RNAi represent a powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process to silence virus infection or replication. HCV translation is mediated by a highly conserved internal ribosome entry site (IRES) within the 5'UTR region making it a relevant target for new drug development. Materials and methods: The present study was proposed to assess and explore the possibility of HCV silencing using siRNA targeting 5'UTR. For this analysis full length HCV 5'UTR of HCV-3a (pCR3.1/5'UTR) was tagged with GFP protein for in vitro analysis in Huh-7 cells. siRNA targeting 5'UTR were designed, and tested against constructed vector in Huh-7 cell line both at RNA and Protein levels. Furthermore, the effect of these siRNAs was confirmed in HCV-3a serum infected Huh-7 cell line. Results: The expression of 5'UTR-GFP was dramatically reduced both at mRNA and protein levels as compared with Mock transfected and control siRNAs treated cells using siRNAs against IRES of HCV-3a genotype. The potential of siRNAs specificity to inhibit HCV-3a replication in serum-infected Huh-7 cells was also investigated; upon treatment with siRNAs a significant decrease in HCV viral copy number and protein expression was observed. Conclusions: Overall, the present work of siRNAs against HCV 5'UTR inhibits HCV-3a expression and represents effective future therapeutic opportunities against HCV-3a genotype.

  • 出版日期2011-5-13