摘要

Arbuscular mycorrhizal (AM) fungi have been shown to occur naturally in saline environments and it has been suggested that differences in fungal behaviour and efficiency can be due to the origin and adaptation of the AM fungus. These findings invite to look out for AM fungal species isolated in saline environments and compare their salt-tolerance mechanisms with those of species living in non-saline areas.
A fungal strain of G. intraradices (Gi CdG) isolated from a region with serious problems of salinity and affected by desertification, has been compared with a collection strain of the same species, used as a model fungus. An in vitro experiment tested the ability of both AM fungi to grow under increasing salinity and an in vivo experiment compared their symbiotic efficiency with maize plants grown under salt stress conditions.
The isolate Gi CdG developed better under saline conditions and induced considerably the expression of GintBIP, Gint14-3-3 and GintAQP1 genes, while it showed a lower induction of GintSOD1 gene than the collection G. intraradices strain. The isolate Gi CdG also stimulated the growth of maize plants under two levels of salinity more than the collection strain. The higher symbiotic efficiency of Gi CdG was corroborated by the enhanced efficiency of photosystem II and stomatal conductance and the lower electrolyte leakage exhibited by maize plants under the different conditions assayed.
The higher tolerance to salinity and symbiotic efficiency exhibited by strain Gi CdG as compared to the collection G. intraradices strain may be due to a fungal adaptation to saline environments. Such adaptation may be related to the significant up-regulation of genes encoding chaperones or genes encoding aquaporins. The present study remarks that AM fungi isolated from areas affected by salinity can be a powerful tool to enhance the tolerance of crops to saline stress conditions.

  • 出版日期2013-5