Adsorptive separation of ethylene/ethane mixtures using carbon nanotubes: a molecular dynamics study

作者:Tian, Xingling; Wang, Zhigang; Yang, Zaixing; Xiu, Peng*; Zhou, Bo
来源:Journal of Physics D: Applied Physics , 2013, 46(39): 395302.
DOI:10.1088/0022-3727/46/39/395302

摘要

Ethylene/ethane separation is a very important process in the chemical industry. Traditionally, this process is achieved by cryodistillation, which is extremely energy-intensive. The adsorptive separation is an energy-saving and environmentally benign alternative. In this study, we employ molecular dynamics simulations to study the competitive adsorption of an equimolar mixture of gaseous ethane and ethylene inside single-walled carbon nanotubes (SWNTs) of different diameters at room temperature. We find that for narrow SWNTs, i.e. the (6, 6) and (7, 7) SWNTs, the selectivities towards ethane, f(selec), can reach values of 3.1 and 3.7, respectively. Such high selectivities are contrary to the opinion of many researchers that the adsorptive separation of an ethylene/ethane mixture by means of dispersion interaction is difficult due to the same carbon number of ethane and ethylene. The key for our observation is that the role of dispersion interaction of ethane's additional two hydrogen atoms with the SWNT becomes significant under extreme confinement. Interestingly, the (8, 8) SWNT prefers ethylene to ethane with f(selec) = 0.6. For wider SWNTs, f(selec) converges to similar to 1. The mechanisms behind these observations, as well as the kinetics of single-file nanopore filling and kinetics of confined gas molecules are discussed. Our findings suggest that efficient ethane/ethylene separation can be achieved by using bundles/membranes of SWNTs with appropriate diameters.