摘要

We analyze the results of long-term observations of the broad-line region (BLR) in the Seyfert 1 galaxy NGC 5548 and provide a critical comparison with the predictions of a hydromagnetically driven outflow model of Emmering, Blandford, & Shlosman. We use this model to generate a time series of C IV line profiles that have responded to a time-varying continuum. Our modifications to the model include cloud emission anisotropy, cloud obscuration, a CLOUDY-generated emissivity function, and a narrow-line component which is added to the BLR component to generate the total line profiles. The model is driven with continuum input based on the monitoring campaigns of NGC 5548 reported in Clavel et al. and Korista et al., and the line strengths, profiles, and lags are compared with the observations. Our model is able to reproduce the basic features of C IV line variability in this active galactic nucleus, i.e., time evolution of the profile shape and strength of the C IV emission line without varying the model parameters. The best-fit model provides the effective size, the dominant geometry, the emissivity distribution, and the three-dimensional velocity field of the C IV BER and constrains the mass of the central black hole to similar to 3 x 10(7) M.. The inner part of the wind in NGC 5548 appears to be responsible for the anisotropically emitted C IV line, while its outer part remains dusty and molecular, thus having similar spectral characteristics to a molecular torus, although its dynamics is fundamentally different.
In addition, our model predicts a differential response across the C IV line profile, producing a redside-first response in the relative velocity interval of 3000 km s(-1) to 6000 km s(-1) followed by the blue mid-wing and finally by the line core. Based on the comparison of data and model cross-correlation functions and one- and two-dimensional transfer functions, we find that the rotating outflow model is compatible with observations of the BLR in NGC 5548.

  • 出版日期1997-4-10