摘要

A face-spoofing attack occurs when an imposter manipulates a face recognition and verification system to gain access as a legitimate user by presenting a 2D printed image or recorded video to the face sensor. This paper presents an efficient and non-intrusive method to counter face-spoofing attacks that uses a single image to detect spoofing attacks. We apply a nonlinear diffusion based on an additive operator splitting scheme. Additionally, we propose a specialized deep convolution neural network that can extract the discriminative and high-level features of the input diffused image to differentiate between a fake face and a real face. Our proposed method is both efficient and convenient compared with the previously implemented state-of-the-art methods described in the literature review. We achieved the highest reported accuracy of 99% on the widely used NUAA dataset. In addition, we tested our method on the Replay Attack dataset which consists of 1200 short videos of both real access and spoofing attacks. An extensive experimental analysis was conducted that demonstrated better results when compared to previous static algorithms results. However, this result can be improved by applying a sparse autoencoder learning algorithm to obtain a more distinguishable diffused image.

  • 出版日期2017-5