Unacylated Ghrelin Induces Oxidative Stress Resistance in a Glucose Intolerance and Peripheral Artery Disease Mouse Model by Restoring Endothelial Cell miR-126 Expression

作者:Togliatto Gabriele; Trombetta Antonella; Dentelli Patrizia; Gallo Sara; Rosso Arturo; Cotogni Paolo; Granata Riccarda; Falcioni Rita; Delale Thomas; Ghigo Ezio; Brizzi Maria Felice*
来源:Diabetes, 2015, 64(4): 1370-1382.
DOI:10.2337/db14-0991

摘要

Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia-subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 lysate 56 deacetylation and results in reduced EC senescence in vivo. We demonstrate, using small interfering RNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews micro-RNA (miR)-126 expression, resulting in the posttranscriptional regulation of vascular cell adhesion molecule 1 expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR-126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression, thus emphasizing its potential clinical impact in avoiding limb loss in PAD.

  • 出版日期2015-4