High-Temperature Characterization of Inorganic Particles and Vapors in a Circulating Fluidized Bed Boiler Cofiring Wood and Rubber Waste

作者:Yang Jingjing; Lin Leteng; Morgalla Mario; Gebremedhin Alemayehu; Strand Michael*
来源:Energy & Fuels, 2015, 29(2): 863-871.
DOI:10.1021/ef502455u

摘要

The effects of varying fuel mixtures and using a lime additive were studied in a 125-MWth circulating fluidized bed boiler. A high-temperature aerosol measurement method using a hot-dilution probe was used to characterize the particles and condensing inorganic vapors upstream from the superheater. The particle size distributions of the extracted samples indicate that when high-sulfur rubber waste, waste wood, and forest fuel were cocombusted, the hot flue gas contained no substantial amount of particulate matter in the fine (<0.3 mu m) particle size range, although the SO2 concentration exceeded 70 ppm. Only a nucleation mode was observed, which was presumably formed from inorganic vapors that condensed in the sampling probe. The size-segregated elemental analysis of the extracted samples indicated that when lime was added, the nucleation mode mainly comprised condensed alkali chlorides, while the sulfates dominated the mode when no lime was added. The presumed explanation for the sulfates in the nucleation mode was the sulfation of the alkali chlorides inside the sampling system. When only the wood fuels and no rubber fuel were cocombusted, the SO2 concentration in the gas was approximately 5 ppm. In this case, an alkali sulfate particle mode formed at approximately 70 nm in the hot flue gas. In addition, vapors of alkali chlorides and lead formed particulate matter inside the sampling probe when using low dilution ratios.

  • 出版日期2015-2