摘要

近年来,随着能源和环境问题日益凸显,新型可再生能源的开发利用意义重大.其中开发高效的光阳极材料用于光电催化全分解水引起了广泛的研究兴趣.纳米WO3由于其禁带宽度适中,被证明是一种效果良好的光催化分解水产氧的催化剂,但无法直接用于催化析氢.若将其作为光阳极材料,在施加较低偏压下可用于高效光电催化全分解水.纳米WO3电极的众多制备方法中,电化学氧化法因其方法简单,高效,制备成本低而具有重要的应用价值.然而,通常情况下电化学氧化法得到的纳米WO3薄膜多为无规则形貌或多孔膜.本文发展了一种简单的阳极氧化法,通过优化调变其制备过程中的氧化时间,氧化电压,电解质离子浓度以及焙烧温度,确定了最佳制备条件(1 h,40 V,0.15 mol/L NH4F,400℃)时样品的光电催化全分解水活性最高,其光电催化析氢和析氧的速率分别达到了3.93和1.96μmol/cm2/h,且量子效率达5.23%的,此NAs-WO3/W薄膜的光电催化活性和稳定性远超商业WO3/W薄膜.场发射扫描电镜结果显示,所制样品是一种新型的形貌规整的类纳米管阵列状WO3薄膜.并进一步通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外可见光谱、光电转换效率、光电流测试、和交流阻抗等手段研究了其晶体结构、表面化学组成、光学及光电化学性质.同时通过实验与计算获得了NAs-WO3/W薄膜在420 nm单色光照下的表面空穴分离率,并与商业WO3制备得到的WO3/W薄膜进行了相关对比.XRD,HRTEM和XPS结果表明,所制NAs-WO3/W薄膜是由暴露(020)和(202)晶面的单斜晶相WO3构成.交流阻抗测试表明,NAs-WO3/W的交流阻抗值要远小于商业WO3/W,说明其光生载流子分离效果要比商业化的WO3/W高;且NAs-WO3/W薄膜的表面空穴分离率是商业WO3/W薄膜的三倍.由此可见NAs-WO3/W具有优异的光电催化性能(高光电转换效率和空穴分离效率),能有效应用于可见光全分解水反应,这主要归因于其类纳米管阵列的特殊一维结构、高结晶度的单斜态WO3及WO3与金属W片之间的强相互作用.本文为高效光电转换材料的制备提供了新的技术与途径.