摘要

Successful cloning by somatic cell nuclear transfer (SCNT) requires a reprogramming process in which the epigenetic state of a differentiated donor nucleus must be converted into art embryonic totipotent state. However, this epigenetic reprogramming is incomplete in SCNT embryos, causing low production efficiency. Recently, it has been reported that trichostatin A (TSA), an inhibitor of histone deacetylase, potentially enhances cloning efficiency. The aim of the present study was to optimize the TSA treatment for miniature pig SCNT embryos and investigate the effect of the acetylation level of historic on developmental competence of SCNT embryos. In order to optimize the TSA treatment, we examined the developmental competence of SCNT embryos under various exposure times (0-50 h) and concentrations (0-500 nM). Treatment with 5 nM TSA for 15 and 20 h beginning at the start of activation significantly increased the blastocyst formation rate (34.6 and 32.4 vs. 18.2%, respectively) and mean cell number (57.0 +/- 2.7 and 56.6 +/- 2.7 vs. 43.5 +/- 2.1, respectively) as compared with the non-treated group (0 h). We then investigated the acetylation levels of histone H3 in SCNT embryos treated with or without TSA (TSA (+) or TSA (-)) as compared with in vitro-fertilized (IVF) embryos. The acetylation levels of the TSA (-) SCNT embryos at the pseudo-pronuclear and 2-cell stages were significantly lower than those of the IVF embryos at the same developmental stages. In contrast, the acetylation levels of the TSA (+) SCNT embryos were similar to those of the IVF embryos. There was no difference in the acetylation levels of all groups at the blastocyst stage. Our data therefore suggests that the acetylation level of histone H3 at the pseudo-pronuclear and 2-cell stages is positively correlated with subsequent development of SCNT embryos, which may be an important event for the vital development of SCNT embryos in miniature pigs.

  • 出版日期2009-12