Systematic analysis of the maize cyclophilin gene family reveals ZmCYP15 involved in abiotic stress response

作者:Wang, Qianqian; Wang, Yu; Chai, Wenbo; Song, Nannan; Wang, Jing; Cao, Limin; Jiang, Haiyang; Li, Xiaoyu*
来源:Plant Cell, Tissue and Organ Culture, 2017, 128(3): 543-561.
DOI:10.1007/s11240-016-1132-0

摘要

Cyclophilins (CYPs) belong to the immunophilin superfamily, having the peptidyl prolyl cis/trans isomerase activity that can catalyze the cis/trans isomerisation process of proline residues. Previous studies have shown their importance in plants, but no comprehensive analysis of maize CYP family has been reported. In the present study, a whole-genome-wide analysis of maize CYP family was performed and 39 ZmCYP genes (ZmCYP1 to ZmCYP39) were identified from maize genome, which were unequally distributed on maize ten chromosomes. Phylogenetic analysis revealed a weak relationship among these ZmCYP genes. Furthermore, their gene structure and motif patterns also displayed variant within the gene family. Four segmental and one tandem duplicated gene pairs were found from 39 ZmCYP genes, respectively, indicating their roles in the expansion of maize CYP family. Expression analysis of 39 ZmCYP genes in maize tissues showed their differential tissue specific expression patterns. Quantitative real-time PCR analysis of 19 selected ZmCYP genes under salinity stress indicated their stress-inducible expression profile. Heterologous expression of ZmCYP15 in E. coli enhanced tolerance against abiotic stress. Subcellular localization analysis indicated ZmCYP15 was located in nucleus and cytoplasm. Our study describes the importance of the maize CYP gene family in stress response, and provides a reference for future study and application for maize genetic improvement.