摘要

Fracture-based wellbore strengthening techniques are preventive methods that can reduce the cost of lost circulation and non-productive time. The mud weight window can be extended by plugging fractures with wellbore strengthening materials (WSM) in the near-wellbore region. To maximize the strengthening effect, accurate fracture geometry prediction is of critical importance to the design of WSM. This paper presents a novel, coupled fluid flow and fracture mechanics model for wellbore strengthening applications that accounts for near-wellboreinduced fracture behavior. For fluid flow, mass conservation is considered and momentum conservation is examined; the latter shows that pressure loss with near-wellbore fracturing is low. Thus, we can neglect the pressure drop in the fractures and assume the fluid pressure inside the fractures is equal to the wellbore pressure. The pressure-width relationship (rock elastic deformation) and stress intensity factor are obtained by a dislocation- based approach. For the fracture propagation criterion, the calculated stress intensity factor is compared with fracture toughness at each time step.
The stress intensity factor and fracture reopening pressure (FROP) are verified with Tada's model and Feng's model, respectively. Then, simulation results are compared with the large leak-off solutions of the Perkins-KernNordgren (PKN) fracture model. The simulation results reveal that the PKN model overestimates the fracture mouth width, fracture length, and wellbore pressure. Furthermore, the simulation results of wellbore pressure show a different trend. Therefore, we cannot directly use the PKN model to design wellbore strengthening applications. The main reason is the presence of wellbore can generate near-wellbore effects that cannot be disregarded. Finally, we conduct a comprehensive parametric study (i.e., fracture toughness, Young's modulus, Poisson's ratio, horizontal stress ratio, and permeability) on wellbore strengthening fracturing.
The proposed model is useful for wellbore strengthening applications using the intentionally induced fractures (i.e., near-wellbore fracturing). Particle size distribution (PSD) of WSM can be designed based on the simulated fracture geometry. No complex model mesh generation or assignment of boundary conditions are needed, which are commonly used in finite element simulation or other numerical methods. The proposed model can also be used to optimize wellbore strengthening operations by performing sensitivity analysis.

  • 出版日期2018-8