摘要

The infrared temperature measurement technique has been applied in various fields, such as thermal efficiency analysis, environmental monitoring, industrial facility inspections, and remote temperature sensing. In the problem of infrared measurement of the metal surface temperature of superheater surfaces, the outer wall of the metal pipe is covered by radiative participating flue gas. This means that the traditional infrared measurement technique will lead to intolerable measurement errors due to the absorption and scattering of the flue gas. In this paper, an infrared measurement method for a metal surface in flue gas is investigated theoretically and experimentally. The spectral emissivity of the metal surface, and the spectral absorption and scattering coefficients of the radiative participating flue gas are retrieved simultaneously using an inverse method called quantum particle swarm optimization. Meanwhile, the detected radiation energy simulated using a forward simulation method (named the source multi-flux method) is set as the input of the retrieval. Then, the temperature of the metal surface detected by an infrared CCD camera is modified using the source multi-flux method in combination with these retrieved physical properties. Finally, an infrared measurement system for metal surface temperature is built to assess the proposed method. Experimental results show that the modified temperature is closer to the true value than that of the direct measured temperature.