The Arabidopsis PEPR pathway couples local and systemic plant immunity

作者:Ross Annegret; Yamada Kohji; Hiruma Kei; Yamashita Yamada Misuzu; Lu Xunli; Takano Yoshitaka; Tsuda Kenichi; Saijo Yusuke*
来源:The EMBO Journal, 2014, 33(1): 62-75.
DOI:10.1002/embj.201284303

摘要

Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate-and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.

  • 出版日期2014-1