摘要

Codes constructed based on finite geometries form a large class of cyclic codes with large minimum distances which can be decoded with simple majority-logic decoding in one or multiple steps. In 2001, Kou, Lin and Fossorier showed that the one-step majority-logic decodable finite geometry codes form a class of cyclic LDPC codes whose Tanner graphs are free of cycles of length 4. These cyclic finite geometry LDPC codes perform very well over the AWGN channel using iterative decoding based on belief propagation (IDBP) and have very low error-floors. However, the standard IDBP is not effective for decoding other cyclic finite geometry codes because their Tanner graphs contain too many short cycles of length 4 which severely degrade the decoding performance. This paper investigates iterative decoding of two-step majority-logic decodable finite geometry codes. Three effective algorithms for decoding these codes are proposed. These algorithms are devised based on the orthogonal structure of the parity-check matrices of the codes to avoid or reduce the degrading effect of the short cycles of length 4. These decoding algorithms provide significant coding gains over the standard IDBP using either the sum-product or the min-sum algorithms.

  • 出版日期2011-2

全文