Abnormal alterations in the Ca2+/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg2+-free solution

作者:Lv, Xintong; Guo, Feng; Xu, Xiaoxue; Chen, Zaixing; Sun, Xuefei; Min, Dongyu; Cao, Yonggang; Shi, Xianbao; Wang, Lei; Chen, Tianbao; Shaw, Chris; Gao, Huiling; Hao, Liying; Cai, Jiqun*
来源:Molecular Medicine Reports, 2015, 12(5): 6663-6671.
DOI:10.3892/mmr.2015.4227

摘要

Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence-like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca2+/CaV1.2/CaM/CaMKII pathway in TRMs and in cultured hippocampal neurons exposed to Mg2+-free solution. The expression levels of CaV1.2, CaM and phosphorylated CaMKII (p-CaMKII; Thr-286) in these two models were examined using immunofluorescence and western blotting. Compared with Wistar rats, the expression levels of CaV1.2 and CaM were increased, and the expression of p-CaMKII was decreased in the TRM hippocampus. However, the expression of the targeted proteins was reversed in the TRM temporal cortex. A significant increase in the expression of CaM and decrease in the expression of CaV1.2 were observed in the TRM cerebellum. In the cultured neuron model, p-CaMKII and CaV1.2 were markedly decreased. In addition, neurons exhibiting co-localized expression of CaV1.2 and CaM immunoreactivities were detected. Furthermore, intracellular calcium concentrations were increased in these two models. For the first time, o the best of our knowledge, the data of the present study suggested that abnormal alterations in the Ca2+/CaV1.2/CaM/CaMKII pathway may be involved in epileptogenesis and in the phenotypes of TRMs and cultured hippocampal neurons exposed to Mg2+-free solution.