Atmospheric histories and global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2)

作者:Vollmer Martin K*; Muhle Jens; Trudinger Cathy M; Rigby Matthew; Montzka Stephen A; Harth Christina M; Miller Benjamin R; Henne Stephan; Krummel Paul B; Hall Bradley D; Young Dickon; Kim Jooil; Arduini Jgor; Wenger Angelina; Yao Bo; Reimann Stefan; O'Doherty Simon; Maione Michela; Etheridge David M; Li Shanlan; Verdonik Daniel P; Park Sunyoung; Dutton Geoff; Steele L Paul; Lunder Chris R; Rhee Tae Siek; Hermansen Ove; Schmidbauer Norbert; Wang Ray H J
来源:JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121(7): 3663-3686.
DOI:10.1002/2015JD024488

摘要

We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the National Oceanic and Atmospheric Administration global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until approximate to 1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected were derived from the region surrounding the Sea of Japan/East Sea. Based on our observations, we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11ktyr(-1) (late 1990s) to 3.9ktyr(-1) at the end of our record (mean of 2013-2015), for H-1301 from 5.4ktyr(-1) (late 1980s) to 1.6ktyr(-1), and for H-2402 from 1.8ktyr(-1) (late 1980s) to 0.38ktyr(-1). Yearly summed halon emissions have decreased substantially; nevertheless, since 2000 they have accounted for approximate to 30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by ozone depletion potentials.