摘要

Source-bordering dunefields have been reported in some drylands of the planet, but scarcely in China where there are extensive drylands. This article reports them in China for the first time, and presents a model for their active origin and development on a semiarid fluvial plain by means of satellite image analyses and field investigations. Local- and regional-scale examples are chosen to analyze the spatial patterns of dunefields, as well as the relationships with the fluvial systems in the central part of Naiman Banner where the Jiaolai River runs, and the lower Laoha River, and the middle and lower Ulijimulun River (principal tributaries of the Xiliaohe River). The active origin and development of source-bordering dunefields can be divided into four stages in terms of the spatial patterns of dunefields and channel dynamics: Stage I - individual dunes on the downwind margins of river valleys where running water constantly erodes the steep slopes of valley and where the downwind slopes orient to local dominant winds; Stage 11 - individual local-scale dunefields formed by deflation of the steep valley slopes and extending antecedent dunes downwind, together with the downstream displacement of meanders; Stage III - individual large-scale dunefield belts along the downwind margins of river valleys formed through frequent lateral migrations of channel; Stage IV - regional-scale dunefields formed mainly by river diversions due to climatic changes or tectonic movements. On the one hand, it is the running water's lateral migration, especially meandering, that prepares suitable places for aeolian systems in terms of both wind flow fields and sand sources, and subsequently it can further cause separate local-scale source-bordering dunefields to link together as a regional-scale dunefield belt given sufficient time. On the other hand, diversions of the river are bound to occur following changing hydrologic regimes resulting from tectonic movements or significant climate change (at regional and millennium scales). As a result, when some dunefield belts as well as the adjacent channels are abandoned, new channels work elsewhere in the same way to actively form new source-bordering dunefields and even dunefield belts at a regional scale.