摘要

Prepared multi-wall carbon nanotube (MWNT) materials, including untreated MWNT, HNO(3)-treated MWNT and HNO(3)-HCl-treated MWNT were covalently attached onto a silica-hydride-modified capillary by hydrosilation, using the abundant double bonds between the pentagon carbons in the MWNT structure. These MWNT-incorporated capillaries were characterized by SEM, ATR-IR and electroosmotic flow (EOF) measurements in phosphate buffers with a pH range of 3.7-9.3 and in the mixtures of acetonitrile modifier. The untreated capillary was assumed to carry some carboxylate groups formed on the non-acid-treated MWNTs, as it had higher EOF values than the hydride capillary. As the MWNTs were treated with HNO(3) and HCl solutions, the capillaries had increasingly higher EOF values. To examine the existence of an electrochromatography mechanism in the modified capillaries, a mixture of nucleosides and thymine was probed to check the velocity factor and retention factor. In addition to the pi-pi interaction between the probe solutes and the MWNT immobilized stationary phases; a reversed-phase mechanism could contribute to the chromatographic retention. For acidic tetracyclines, increasing the loadability of MWNTs resulted in a high retention factor and improved the separation resolution.