摘要

In order to overcome the roughness of the previously proposed micromechanical model [Acta Mech. Sin. (2011) 382], an enhanced multiscale analytical model was thus developed based on the rule of mixture, shear-lag theory and statistical approach to forecast the load carrying capacity of the prestressed ceramic matrix composites (CMCs) subjected to high-temperature oxidation. For comprehensive characterization of the mechanical degradation mechanisms, the oxidation induced fiber necking (or embrittlement) and fiber-matrix interface weakening were both taken into account. The suggested model was then applied to 2D-C/SiC composites. The influences of interface friction resistance, interface recession length, fiber necking factor and oxidation duration upon the residual mechanical property were investigated. Parametric analysis demonstrates that the modified formulations are much more reasonable than the previous model. The predicted residual tensile modulus and strength for the 2D-C/SiC composite agree well with the experimental data and furthermore the microscopic damage mechanisms were correlated properly with the macroscopic fracture morphologies.