摘要

Neurological disorders are the leading causes of poor balance. Previous studies have shown that biofeedback can compensate for weak or missing sensory information in people with sensory deficits. These biofeedback inputs can be easily recognized and converted into proper information by the central nervous system (CNS), which integrates the appropriate sensorimotor information and stabilizes the human posture. In this study, we proposed a form of cutaneous feedback which stretches the fingertip pad with a rotational contactor, so-called skin stretch. Skin stretch at a fingertip pad can be simply perceived and its small contact area makes it favored for small wearable devices. Taking advantage of skin stretch feedback, we developed a portable sensory augmentation device (SAD) for rehabilitation of balance. SAD was designed to provide postural sway information through additional skin stretch feedback. To demonstrate the feasibility of the SAD, quiet standing on a force plate was evaluated while sensory deficits were simulated. Fifteen healthy young adults were asked to stand quietly under six sensory conditions: three levels of sensory deficits (normal, visual deficit, and visual + vestibular deficits) combined with and without augmented sensation provided by SAD. The results showed that augmented sensation via skin stretch feedback helped subjects correct their posture and balance, especially as the deficit level of sensory feedback increased. These findings demonstrate the potential use of skin stretch feedback in balance rehabilitation.

  • 出版日期2017-1