摘要

Accurate and practical calculation of aquitard consolidation is required for a reliable analysis of land subsidence caused by groundwater overexploitation in a multilayered aquifer system because aquitards are generally more compressible than aquifers are. This study proposes a coupled one-dimensional viscoelastic-plastic consolidation model that considers the combined effect of changes in soil parameters and body force to simulate aquitard consolidation caused by hydraulic head variations in neighbouring aquifers. The proposed model uses variable total stress and simultaneously solves hydraulic head and vertical soil displacement. The constitutive relation based on the Voigt model with different elastic moduli of the spring in normally consolidated and overconsolidated soils is used to describe the viscoelastic-plastic deformation mechanism of aquitards. In addition, the proposed model considers the combined effect of variations in hydraulic conductivity, elastic moduli, and body force on the calculation of aquitard consolidation. Three hypothetical scenarios with various hydraulic head variations in aquifers are used to examine the coupled one-dimensional viscoelastic-plastic consolidation model. The results show that neglecting plasticity and viscosity of soil causes aquitard consolidation to be respectively underestimated and overestimated. In addition, ignoring body force variation underestimates aquitard consolidation, whereas neglecting soil parameters variation overestimates aquitard consolidation. Two real case scenarios are also studied to further demonstrate the applicability of the coupled one-dimensional viscoelastic-plastic consolidation model.

  • 出版日期2015-10-30