摘要

Structural, electronic, and magnetic properties of Sc-N (N=2-14) clusters have been investigated using density functional theory (DFT) calculations. Different spin states isomer for each cluster size has been optimized with symmetry relaxation. The structural stability, dissociation energy, binding energy, spin stability, vertical ionization energy, electron affinity, chemical hardness, and size dependent magnetic moment per atom are calculated for the energetically most stable spin isomer for each size. The structural stability for a specific size cluster has been explained in terms of atomic shell closing effect, close packed symmetric structure, and chemical bonding. Spin stability of each cluster size is determined by calculating the value of spin gaps. The maximum value for second-order energy difference is observed for the clusters of size N=2, 6, 11, and 13, which implies that these clusters are relatively more stable. The magnetic moment per atom corresponding to lowest energy structure has also been calculated. The magnetic moment per atom corresponding to lowest energy structures has been calculated. The calculated values of magnetic moment per atom vary in an oscillatory fashion with cluster size. The calculated results are compared with the available experimental data.

  • 出版日期2014-11