摘要

Laser has been widely applied in the scientific and engineering areas including communications, medical treatment, industry, and military due to its extremely strict monochromaticity, high coherence and high energy density. Organic laser based on solution processable polymer gain media has attracted considerable attention in various applications due to its easy fabrication, compact system and flexibility. At present, the chemosensors based on organic semiconductor laser have been widely developed. It has been reported to achieve solution monitoring by organic DFB (distributed feedback) laser. Although the method has its own advantages, there are still many operability and craftsmanship problems to be resolved. In this paper we introduce a new type of the real-time monitoring for various solution. The monitor is realized by using amplified spontaneous emission (ASE) from optically pumped organic semiconductor gain media. The gain media comprising blends of poly(9, 9-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(3-hexylthiophene) (P3HT) at a ratio of (1 5 : 8 5) wt.% is dissolved into toluene (25 mg/mL). Thin films (90 nm thickness) of P3HT/F8BT are obtained by spin coating (2000 r/min) from solution onto pre-cleaned quartz substrates. The P3HT/F8BT film demonstrates the absorption peak at 471 nm, the PL peak at 622 nm, and the ASE peak at 661 nm with FWHM (full-width-at-half-maximum) linewidth of similar to 10 nm under the stripe laser pumping. The thin films are, then, covered by droplet of solution to form planar waveguide structure with variable effective refractive index. Upon analyte binding, a change in refractive index at the P3HT/F8BT film surface results in a change in the effective refractive index of the planar waveguide and in turn induces shift of the ASE mode wavelength and variation of ASE threshold of the organic gain media. The changes in ASE wavelength and threshold can be monitored for sensing. The red shift of 4.5 nm in the ASE spectrum is from 661 to 665.5 nm and the threshold increases from 0.579 mu J/pulse to 1.447 mu J/pulse which can be detected with the concentration of sodium chloride increasing from 0 to 25 wt.% in pure water. Our experimental results show that this method is easy to detect the concentration grads of 1 wt.% sodium chloride solution. The measurement sensitivity of solution reaches 97.8 nm/RIU (refractive index unit), and accuracy reaches 141.9 nm/RIU. Furthermore, we demonstrate that the chemosensor could be used for detecting different kinds of solution in the same concentration. The ASE peak position and threshold display clearly different when the droplet 10 wt.% sodium, chloride solution and hydromel solution onto P3HT/F8BT film. Our study suggests that the organic gain media films have potentiality to be developed as a high sensitivity and high accuracy chemosensor to detect solution due to the high sensitivity of the ASE peak position and threshold to the refractive index of the solution.

全文