摘要

In this study, a state transition algorithm (STA) is investigated into constrained engineering design optimization problems. After an analysis of the advantages and disadvantages of two well-known constraint-handling techniques, penalty function method and feasibility preference method, a two-stage strategy is incorporated into STA, in which, the feasibility preference method is adopted in the early stage of an iteration process whilst it is changed to the penalty function method in the later stage. Then, the proposed STA is used to solve three benchmark problems in engineering design and an optimization problem in power-dispatching control system for the electro-chemical process of zinc. The experimental results have shown that the optimal solutions obtained by the proposed method are all superior to those by typical approaches in the literature in terms of both convergency and precision.