摘要

A profiled chamber metering pump (PCMP) is a new type of positive-displacement vane pump which is composed of a special stator and a rotor-slide assembly. The face-shaped curve of the inner chamber of the stator is formed by means of two quarter circular arcs and two quarter noncircular arcs, and one of the two quarter noncircular arcs is defined as transition curve. The geometry of the transition curve directly affects the dynamic performances of the pump system, including its mechanical vibration, friction, wear, and kinetic losses. This paper discusses a set of dynamic analysis methods that combine kinetic loss control with vibration control for optimization of the transition curve of the PCMP. At first, basic conception and work line on the method are explained. In a second step, by means of force analysis, a kinetic loss model is established. Then, the model is used to examine a group of vibration optimized curves in polynomial form, and kinetic losses caused by different mechanical resistance forces are calculated. Finally, through a comparison analysis together with vibration and kinetic losses, comprehensive optimal transition curves can be obtained.