Posture and Activity Recognition and Energy Expenditure Estimation in a Wearable Platform

作者:Sazonov Edward*; Hegde Nagaraj; Browning Raymond C; Melanson Edward L; Sazonova Nadezhda A
来源:IEEE Journal of Biomedical and Health Informatics, 2015, 19(4): 1339-1346.
DOI:10.1109/JBHI.2015.2432454

摘要

The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here, we describe the use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time recognition of various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we compare the use of support vector machines (SVM), multinomial logistic discrimination (MLD), and multilayer perceptrons (MLP) for posture and activity classification followed by activity-branched EE estimation. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a 4-h stay in a room calorimeter. MLD and MLP demonstrated activity classification accuracy virtually identical to SVM (similar to 95%) while reducing the running time and the memory requirements by a factor of >10(3). Comparison of per-minute EE estimation using activity-branched models resulted in accurate EE prediction (RMSE = 0.78 kcal/min for SVM andMLD activity classification, 0.77 kcal/min for MLP versus RMSE of 0.75 kcal/min for manual annotation). These results suggest that low-power computational algorithms can be successfully used for real-time physical activity monitoring and EE estimation on a wearable platform.

  • 出版日期2015-7