摘要

To replace ternary polymer with binary polymer, a novel bifunctional comonomer beta-methylhydrogen itaconate (MHI) was synthesized to prepare poly (acrylonitrile-co-beta-methylhydrogen itaconate) [P(AN-co-MHI)] copolymer used for carbon fiber precursor. The structural evolution and stabilization mechanism of P(AN-co-MHI) and polyacrylonitrile (PAN) during stabilization were studied by Fourier transform infrared spectroscopy, x-ray diffraction, differential scanning calorimetry, thermogravimetry, and kinetic investigation. The activation energy (E-a) of the stabilization reactions were calculated by Kissinger method and Ozawa method. The results show that the P(AN-co-MHI) exhibits a lower stabilization temperature than terpolymers containing similar chemistry component and a significantly improved stabilization performance compared with PAN homopolymer, such as lower cyclization temperature, lower E-a (85.36 kJ/mol), and larger extent of stabilization under the same condition, which is mainly attributed to the initiation of MHI comonomer through an ionic cyclization mechanism. The dehydrogenation of P(AN-co-MHI) is also promoted by the incorporation of comonomer MHI into PAN chains. Simultaneously, the rheological analysis shows that P(AN-co-MHI) possesses better spinnability than PAN, which is beneficial for preparation of high performance carbon fiber.