An image-guided precision proton radiation platform for preclinical in vivo research

作者:Ford E; Emery R; Huff D; Narayanan M; Schwartz J; Cao N; Meyer J; Rengan R; Zeng J; Sandison G; Laramore G; Mayr N
来源:Physics in Medicine and Biology, 2017, 62(1): 43-58.
DOI:10.1088/1361-6560/62/1/43

摘要

There are many unknowns in the radiobiology of proton beams and other particle beams. We describe the development and testing of an image-guided low-energy proton system optimized for radiobiological research applications. A 50 MeV proton beam from an existing cyclotron was modified to produce collimated beams (as small as 2 mm in diameter). Ionization chamber and radiochromic film measurements were performed and benchmarked with Monte Carlo simulations (TOPAS). The proton beam was aligned with a commercially-available CT image-guided x-ray irradiator device (SARRP, Xstrahl Inc.). To examine the alternative possibility of adapting a clinical proton therapy system, we performed Monte Carlo simulations of a range-shifted 100 MeV clinical beam. The proton beam exhibits a pristine Bragg Peak at a depth of 21 mm in water with a dose rate of 8.4 Gy min(-1) (3 mm depth). The energy of the incident beam can be modulated to lower energies while preserving the Bragg peak. The LET was: 2.0 keV mu m(-1) (water surface), 16 keV mu m(-1) (Bragg peak), 27 keV mu m(-1) (10% peak dose). Alignment of the proton beam with the SARRP system isocenter was measured at 0.24 mm agreement. The width of the beam changes very little with depth. Monte Carlo-based calculations of dose using the CT image data set as input demonstrate in vivo use. Monte Carlo simulations of the modulated 100 MeV clinical proton beam show a significantly reduced Bragg peak. We demonstrate the feasibility of a proton beam integrated with a commercial x-ray image-guidance system for preclinical in vivo studies. To our knowledge this is the first description of an experimental image-guided proton beam for preclinical radiobiology research. It will enable in vivo investigations of radiobiological effects in proton beams.

  • 出版日期2017-1-7