摘要

Niobium oxide produced by an anodization process for application in a high-efficiency dye-sensitized solar cell (DSSC) has been reported. In order to increase the energy conversion efficiency of the cell, we demonstrated niobium oxide micro-mountain and nano-forest pancake structures that contained nanowires on the surface. The increase in efficiency is attributed to the significantly enhanced surface area, which allows for more dye loading and light harvesting, as well as the reduced charge recombination, which provides direct conduction pathways along the crystalline Nb2O5 micro-mountain structures with nanowires. We observed that the photovoltaic performance of the Nb2O5 DSSC increased from 1.03% to 3.35% when the oxide thickness was increased from 9.3 mu m to 27.7 mu m. Since the anodization process is very cheap and takes place at low temperatures, it has substantial potential for the further development of DSSCs with metal-oxide nano-materials. Anodized oxide advantage is that essentially any form of a niobium surface can be treated in a quick and low-cost approach with Nb2O5 coating.

  • 出版日期2013-5