摘要

PURPOSE: To describe a novel source delivery system for intraoperative brachytherapy in patients with early-stage lung cancer that is readily adaptable to a video-assisted thoracoscopic surgery approach and can be precisely delivered to achieve optimal dose distribution.
METHODS AND MATERIALS: Radioactive ytterbium-169 ((169)Yb) was sealed within a titanium tube 0.28 mm in diameter and then capped and resealed by titanium wires laser welded to the tube to serve as the legs of a tissue-fastening system. Dose simulations were performed using Monte Carlo computer code (Los Alamos National Laboratory, Los Alamos, NM) to mimic the geometric and elemental compositions of the source, fastening apparatus, and surroundings.
RESULTS: Five test source capsules were subjected to a tensile load to failure. Failure in each capsule occurred in the wire of the fastener leg; there were no weld failures. Monte Carlo simulations and subsequent dose measurement showed the perturbation by the source legs in the deployed (bent over) position to be small (4-5%) for (169)Yb and much less than that for iodine-125 (32%).
CONCLUSION: We have developed a (169)Yb brachytherapy source delivery system that can be used in conjunction with commercially available surgical stapling instruments, facilitates the precise placement of brachytherapy sources relative to the surgical margin, assures the seeds remain fixed in their precise position for the duration of the treatment, overcomes the technical difficulties of manipulating the seeds through the narrow surgical incision associated with video-assisted thoracoscopic surgery, and reduces the radiation dose to the clinicians.

  • 出版日期2011-4