摘要

DNA methylation is the conversion of cytosine to 5-methylcytosine, leading to changes in the interactions between DNA and proteins. Methylation of cytosine-guanine (CpG) islands (CGIs) is associated with gene expression silencing of the involved promoter. Although studies focussing on global changes or a few single loci in DNA methylation have been performed in dogs with certain diseases, genome-wide analysis of DNA methylation is required to prospectively identify specific regions with DNA methylation change. The hypothesis of this study was that next-generation sequencing with methylation-specific signatures created by sequential digestion of genomic DNA with Smal and Xmal enzymes can provide quantitative information on methylation levels. Using blood from healthy dogs and cells obtained from canine lymphoma cell lines, approximately 100,000 CpG sites across the dog genome were analysed with the novel method established in this study. CpG sites in CGIs broadly were shown to be either methylated or unmethylated in normal blood, while CpG sites not within CpG islands (NCGIs) were largely methylated. Thousands of CpG sites in lymphoma cell lines were found to gain methylation at normally unmethylated CGI sites and lose methylation at normally methylated NCGI sites. These hypermethylated CpG sites are located at promoter regions of hundreds of genes, such as TWIST2 and TLX3. In addition, genes annotated with 'Homeobox' and 'DNA-binding' characteristics have hypermethylated CpG sites in their promoter CGIs. Genome-wide quantitative DNA methylation analysis is a sensitive method that is likely to be suitable for studies of DNA methylation changes in cancer, as well as other common diseases in dogs.

  • 出版日期2018-1