摘要

Yarrowia lipolytica is a dimorphic yeast species that can grow in the ovoid yeast form or in the elongated pseudohyphal or hyphal form depending on the growth conditions. Here, we show that the Rap GTPase Rsr1 of Y. lipolytica (YlRsr1) plays an important role in cellular morphogenesis in this microorganism. Cells deleted for YlRSR1 exhibited impaired polarized growth during yeast-form growth. Pseudohyphal and hyphal development were also abnormal. YlRsr1 is also important for cell growth, since the deletion of YlRSR1 in cells lacking the Ras GTPase YlRas2 caused lethality. Y. lipolytica cells bud in a bipolar pattern in which the cells produce the new buds at the two poles. YlRsr1 plays a prominent role in this bud site selection process. YlRsr1's function in bud site selection absolutely requires the cycling of YlRsr1 between the GTP-and GDP-bound states but its function in cellular morphogenesis does not, suggesting that the two processes are differentially regulated. Interestingly, the Ras GTPase YlRas2 is also involved in the control of bud site selection, as Ylras2 Delta cells were severely impaired in bipolar bud site selection. The GTP/GDP cycling and the plasma membrane localization of YlRas2 are important for YlRas2's function in bud site selection. However, they are not essential for this process, suggesting that the mechanism by which YlRas2 acts is different from that of YlRsr1. Our results suggest that YlRsr1 is regulated by the GTPase-activating protein (GAP) YlBud2 and partially by YlCdc25, the potential guanine nucleotide exchange factor (GEF) for YlRas2.