摘要

Many real-world multi-state systems can be modeled as multistate flow networks (MFN) such that the net flow into and out of a node (excluding the source and target nodes) is equal to zero, e.g., distribution systems and supply chains. The quickest path (QP) reliability problem is to evaluate the probability, i.e., R-(d,R-t)-QP, that at least units of data can be sent from the source node to the sink node through a single special minimal path (MP) within units of time in an MFN. Such a special MP is called a (d, t)-QP here. In this study, a novel algorithm based on depth-first-search (DFS) is proposed to search for all (d, t)-QPs without solving two NP-hard problems: finding all minimal paths (MPs) in advance, and removing all infeasible (d, t)-QPs candidates. The correctness of the proposed Depth-First-Search (DFS)-based algorithm is proven, and an example is provided to illustrate the generation of all (d, t)-QPs. Furthermore, the analysis of the algorithm's computational complexity and computer experiments indicate that it is more efficient than known algorithms.