摘要

This paper investigates the possibility of using transferable belief model (TBM) as a promising alternative for the problem of path planning of nonholonomic mobile robot equipped with ultrasonic sensors in an unknown dynamic environment, where the workspace is cluttered with static obstacles and moving obstacles. The concept of the transferable belief model is introduced and used to design a fusion of ultrasonic sensor data. A new strategy for path planning of mobile robot is proposed based on transferable belief model. The robot's path is controlled using proposed navigation strategy that depends on navigation parameters which is modified by TBM pignistic belief value. These parameters are tuned in real time to adjust the path of the robot. A major advantage of the proposed method is that, with detection of the robot's trapped state by ultrasonic sensor, the navigation law can determine which obstacle is dynamic or static without any previous knowledge, and then select the relevant obstacles for corresponding robot avoidance motion. Simulation is used to illustrate collision detection and path planning.