摘要

Hyperbranched polymer with highly branched three-dimensional topological structure, a large number of end groups, and multifaceted functionalities have gained much attention, while polymers with aggregation-induced emission (AIE) properties become a group of popular luminescent materials recently. The design and synthesis of AIE-active hyperbranched polymers, which combine the advantages of these two types of materials, are attractive but challenging. In this work, four hyperbranched poly(tetrahydropyrimidine)s were synthesized from the metal-free room temperature multicomponent tandem polymerization of diester group-activated internal alkyne, polyfunctional aromatic amines, and formaldehyde in methanol under the catalysis of acetic acid. Through different monomer combination and controlling the monomer loading order, hyperbranched polymers with various topological structures as well as sequences of different functional groups in the polymer backbone were obtained with high molecular weights (up to 3.0 x 10(4) g/mol) in high yields (up to 98%). The hyperbranched poly(tetrahydropyrimidine) emitted faintly in solution, while its luminescence was notably enhanced in the aggregated state, suggesting its typical aggregation-induced emission property. It is anticipated that the multicomponent polymerization may provide a synthetic platform for the construction of hyperbranched polyheterocycles with diverse structures and functionalities.