摘要

A novel "tunnel-like" cyclopalladated arylimine was prepared and immobilized on graphene oxide nanosheet to form a hybrid catalytic material (denoted as F-GO-Pd) by self-assembly. The F-GO-Pd catalyst was characterized by XRD, FTIR, Raman, XPS, SEM, and TEM. This novel hybrid catalytic material was proven to be an efficient catalyst for the Suzuki-Miyaura coupling reaction of aryl halides (I, Br, Cl) with arylboronic acids in aqueous media under mild conditions with a very low amount of catalyst (0.01 mol%) and a high turnover frequency (TOF) (> 20 000 h(-1)). In particular, high yields also could be obtained at room temperature with prolonged time. F-GO-Pd also showed good stability and recyclability seven times with a superior catalytic activity. The heterogeneous catalytic mechanism was investigated with kinetic studies, hot filtration tests, catalyst poisoning tests, and in situ FTIR spectroscopy with a ReactIR and the deactivation mechanism of the catalysts was proposed through analysis of its chemical stability by TEM, SEM, Raman, and XRD, indicating that a heterogeneous catalytic process occurred on the surface and the changes of the catalytic activity during the recycling were related to the micro-environment of the catalyst surface.