摘要

Proton precession magnetometer is a high-precision device for weak magnetostatic field measurement. The measurement accuracy depends on the frequency measurement of free induction decay (FID) signal, while the signal to noise ratio (SNR) is an important factor affecting the results. Many signal processing methods have been proposed to improve the SNR of FID signal. However, the theoretical analysis of different types of noises for FID signal has not be conducted yet. In addition, the relationship between the frequency measurement accuracy and SNR has not been explicitly established and quantified. This paper first proposes a background noise model based on the extracted features from the FID signal. With this model, background noises, such as white noise, narrow-band noise, and phase noise etc., can be calculated and estimated. Secondly, the relationship between the frequency measurement accuracy and SNR is identified. We also built a prototype proton magnetometer for field tests and validation purpose. Experiments were conducted to investigate this relation through simulation. Different values for frequency accuracy were obtained with different SNRs from the acquired FID signals from field tests. The consistence between the measurement and computational results is observed. When SNR is larger than 30 dB, the absolute frequency accuracy becomes constant which is about 0.04 Hz. With the stability taken into account, the accuracy can be better even when the SNR is higher than 30 dB. This study provides a reference to optimize the design of proton precession magnetometer and the frequency calculation for FID signal.