摘要

The Drosophila visual system has been proved to be a powerful genetic model to study eye disease such as retinal degeneration. Here, we describe a genetic method termed "Rh1::GFP ey-flp/hid" that is based on the fluorescence of GFP-tagged major rhodopsin Rh1 in the eyes of living flies and can be used to monitor the integrity of photoreceptor cells. Through combination of this method and ERG recording, we examined a collection of 667 mutants and identified 18 genes that are required for photoreceptor cell maintenance, photoresponse, and rhodopsin synthesis. Our findings demonstrate that this "Rh1::GFP eyflp/hid" method enables high-throughput F1 genetic screens to rapidly and precisely identify mutations of retinal degeneration.