A study on the thickness dependence of static and dynamic magnetic properties of Ni81Fe19 thin films

作者:Kern P R; da Silva O E; de Siqueira J V; Della Pace R D; Rigue J N; Carara M*
来源:Journal of Magnetism and Magnetic Materials, 2016, 419: 456-463.
DOI:10.1016/j.jmmm.2016.06.061

摘要

A set of Permalloy thin films with thicknesses ranging from 100 nm to 1000 nm have been investigated by in-plane hysteresis loops, magnetic torque, microwave permeability and X-ray diffraction measurements. The frequency evolution of the complex permeability was treated within the Debye relaxation model allowing the obtainment of the resonance frequency, resonance linewidth and the rotational component of the permeability at each applied field. The samples can be separated in three groups according their magnetic properties. Samples with thickness until 150 nm present magnetic properties typical of a system with a well defined in-plane uniaxial anisotropy and just one resonance frequency in the high frequency permeability spectra. Samples with thicknesses above 300 nm present magnetization loops almost isotropic in-plane and two resonance frequencies in the permeability spectra. The samples at the intermediate thickness range present some characteristic from thinner and other of the thicker group. Ferromagnetic resonance and torque measurements have detected the presence of a small uniaxial anisotropy even in the thicker group of samples. The multiple ferromagnetic resonances in the permeability spectra present in the thicker group of samples were treated as non-interacting magnetic systems. These characteristics were attributed to the appearance of stripe domains together with a rotatable anisotropy, due to an out-of-plane magnetization component. The relaxation mechanisms which give rise to the resonance linewidth were discussed considering two possible sources, Gilbert damping and anisotropy dispersion. While the Gilbert damping was almost the same for all samples it was verified the anisotropy dispersion increase with the thickness.

  • 出版日期2016-12-1