A long-lived o-semiquinone radical anion is formed from N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial substance

作者:Akiyama Nobuko*; Nakanishi Ikuo; Ohkubo Kei; Satoh Kazue; Tsuchiya Koichiro; Nishikawa Takeshi; Fukuzumi Shunichi; Ikota Nobuo; Ozawa Toshihiko; Tsujimoto Masafumi; Natori Shunji
来源:Journal of Biochemistry, 2007, 142(1): 41-48.
DOI:10.1093/jb/mvm101

摘要

N-beta-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial peptide, generates hydrogen peroxide (H(2)O(2)) that exerts antitumour activity. We have investigated the precise mechanism of H(2)O(2) production from 5-S-GAD by autoxidation aiming to understand its action toward tumour cells. Using the electron spin resonance (ESR) technique, we detected a strong signal due to radical formation from 5-S-GAD. Surprisingly, the ESR signal of the radical derived from 5-S-GAD appeared after incubation for 30 min at 37 degrees C in the buffer at pH 7.4; the signal was persistently detected for 10h in the absence of catalytic metal ions. The computer simulation of the observed ESR spectrum together with the theoretical calculation of the spin density of the radical species indicates that an o-semiquinone radical anion was formed from 5-S-GAD. We demonstrated that H(2)O(2) is produced via the formation of superoxide anion (O(2)(center dot-)) by the electron-transfer reduction of molecular oxygen by the 5-S-GAD anion, which is in equilibrium with 5-S-GAD in the aqueous solution. The radical formation and the subsequent H(2)O(2) production were inhibited by superoxide dismutase (SOD), when the antitumour activity of 5-S-GAD was inhibited by SOD. Thus, the formation of the o-semiquinone radical anion would be necessary for the antitumour activity of 5-S-GAD as an intermediate in the production of cytotoxic H(2)O(2).

  • 出版日期2007-7