摘要

The paper poses the problem of minimum-time velocity planning subject to a jerk amplitude constraint and to arbitrary velocity/acceleration boundary conditions. This problem which is relevant in the field of autonomous robotic navigation and also for inertial one-dimensional mechatronics systems is dealt with an algebraic approach based on Pontryagin%26apos;s Maximum Principle. The exposed complete solution shows how this time-optimal planning can be reduced to the problem of determining the positive real roots of a quartic equation. An algorithm that is suitable for real-time applications is then presented. The paper includes detailed examples also highlighting the special cases of this planning problem.

  • 出版日期2013-8