摘要

The current technological developments in autonomous underwater vehicles (AUVs) and underwater communication have nowadays allowed to push the original idea of autonomous ocean sampling network even further, with the possibility of using each agent of the network not only as an operative component driven by external commands (model-driven) but as a reactive element able to act in response to changing conditions as measured during the exploration (data-driven). With this paper, we propose a novel data-driven algorithm for AUVs team for adaptive sampling of oceanic regions, where each agent shares its knowledge of the environment with its teammates and autonomously takes decision in order to reconstruct the desired oceanic field. In particular, sampling point selection is made in order to minimize the uncertainty in the estimated field while keeping communication contact with the rest of the team and avoiding to repeatedly sampling sub-regions already explored. The proposed approach is based on the use of the emergent behaviour technique and on the use of artificial potential functions (interest functions) to achieve the desired goal at the end of the mission. In this way, there is no explicit minimization of a cost functional at each decision step. The oceanic field is reconstructed by the application of radial basis functions interpolation of irregularly spaced data. A simulative example for the estimation of a salinity field with sea data obtained using the Mediterranean Sea Forecasting System is shown in the paper, in order to investigate the effect of the different uncertainty sources, including sea currents, on the behaviour of the exploration team and ultimately on the reconstruction of the salinity field.

  • 出版日期2011-11