摘要

The adsorption of a water molecule on a basal Bi(111) electrode surface, crystallising in the rhombohedral system, has been studied in the framework of cluster model. The quantum chemical calculations were performed at the Density Functional Theory (DFT) level and the electrical double layer effects were analysed by using an external electric field. In contrast to computational predictions reported previously for other metal surfaces, crystallising in the face-centred cubic or hexagonal close-packed systems, a hollow site for Bi(111) was found to be energetically the most preferable; the water adsorption energy amounts to -28 kJ mol(-1). In a wide range of surface charge densities the water molecule is bound preferentially through the O atom in orientation perpendicular to the surface plane. The Bi(111) hydrophilic properties are compared with those for other metals. Some adsorption characteristics of a hydrogen atom and a hydroxyl group at Bi(111) are reported as well, which give evidence in favour of the non-dissociative adsorption of water molecules.

  • 出版日期2010-10